报告题目:Higher Order Energy Stable ETD based Methods for Gradient Flows
报 告 人:王晓明 教授 南方科技大学
报告时间:2020年9月11日 10:00
报告地点:bat365在线平台三楼会议室
校内联系人:张然 zhangran@jlu.edu.cn
报告摘要:
Many natural and engineering problems follow gradient flow structures in the sense that systems evolve to decrease certain energy. The dynamics of most of these gradient systems are complicated and hence numerical methods are called for. There are at least two desirable features for numerical algorithms for gradient flows with long evolution process: efficient higher oder in time, and long-time stability. We present a class of efficient higher-order energy stable methods for a class of gradient flows based on the exponential time differencing (ETD) method combined with multi-step methods and interpolation. As a specific example, we present a third order ETD based scheme for thin film epitaxial growth model together with numerical results establishing the convergence and stability of the scheme, and the ability of the scheme to capture long-time scaling properties of the system.
报告人简介:
王晓明本科及硕士毕业于复旦大学,博士毕业于印第安纳大学布卢明顿分校,主要研究方向为应用偏微分方程及其数值方法,在CPAM、JFM、SINUM等杂志发表论文90多篇,系中组部认定的国家级人才 。曾任职纽约库朗研究所、普林斯顿高等研究院、爱荷华州立大学、复旦大学。回国前为美国佛罗里达州立大学长聘正教授和数学系系主任,现任南方科技大学数学系系主任、讲席教授。